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Scientific Motivation =

* The scientific understanding of how atmospheric processes interact to stabilize planetary
albedo on interannual time-scales is not mature.

e Can measurements and models be used to advance the understanding of this phenomenon?
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Scientific Motivation =

* The tuning of models with measurements complicates the advancement of this understanding.

* Within a range of climate states, that has yet to be determined, the tuning process ensures that
models can provide no information about the stability, or lack thereof, in planetary albedo.
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Overview

* There are two parts to this talk, where we seek to look at the shortwave
reflected energy budget: the temporal and spectral components of the
Earth’s albedo.

* These provide alternative vantage points to understand TOA radiative
fluxes in order to look into how they can be used to confront models.

* |n the first part, we will use a relatively novel set of high-frequency
observations to test if there are potential biases in the development of
diurnally-averaged fluxes, and then see what that means for
measurement-model intercomparisons.

* In the second part, we will explore what we could potentially learn from

spectrally-resolved albedo measurement to understand if models can
achieve the right albedo for the wrong reason.
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=3 Part I: Importance of the Diurnal Cycle of Clouds %=

* Biases in albedo can arise from surface reflection and time-mean cloud properties. One
understudied source of bias is cloud diurnal cycles.

e Diurnal variability in clouds modulates the diurnal cycle of solar insolation.

* Monthly-mean shortwave fluxes are influenced unevenly by the diurnal cycle of clouds.

Cloud Diurnal Cycle Contribution to Monthly-Mean SW Flux
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e  But how well do we know diurnal
variations in SW radiation?

e CERES monthly-averaged flux estimates
require an estimate of the diurnal cycle
in RSR, even though observations are
made at fixed local solar hours.

* The process-chain for diurnal filling has
numerous components, relying primarily
on a network of geostationary cloud
observations.

* The diurnal filling of fluxes has not
independently tested outside of GERB.

* Independent tests of CERES SYN are
needed.
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) Observations from DSCOVR

* Launched in 2015, the Deep Space Climate Observatory orbits about the L-1 point between
the Earth and the Sun.

e Continuous observations of narrow-band imagery from EPIC and broadband Earth-as-a-pixel
radiance from NISTAR are provided.

a) side view
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NISTAR/EPIC Observations

* Launched in 2015, the Deep Space Climate Observatory orbits about the L-1 point between
the Earth and the Sun.

* Continuous observations of narrow-band imagery from EPIC and broadband Earth-as-a-pixel
radiance from NISTAR are delivered from DSCOVR.
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Converting Radiances to Fluxes =

* Suetal, 2019 have developed algorithms for converting those observations to shortwave
fluxes, using the CERES ADM infrastructure for scene identification.
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) Observations of RSR Variability =

* Two years of daytime TOA reflected shortwave radiation (RSR) from CERES Synoptic product,
and derived from EPIC imagery and NISTAR radiometry reveal many modes of variability and a

NISTAR bias.

2017-2018 Daylit Flux Times-Series Residuals from CERES SYN
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Observations of RSR Diurnal Variability =

* RSR exhibits a marked diurnal cycle driven by differential land-surface albedo from Africa.
Clouds also modulate this diurnal cycle

CERES SYN, EPIC, and NISTAR Daytime Flux Diurnal Cycle: SON
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= RSR Modes of Variability

* An analysis of the modes of variability in RSR from two years of observations from EPIC,
NISTAR, and CERES SYN reveals similar variability in frequency between the 3 instrument

estimates.
* The observations show that the diurnal-filling process chain does not have discernible biases.

2017-2018 Daylit Flux Variability Observational Estimates
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Obs vs Model RSR Diurnal Cycle =

With increased confidence in the diurnal cycle of RSR

As part of the Coupled Model Intercomparison Project — Phase 5 (CMIP5), a number of models reported
3-hourly shortwave fluxes as part of CFMIP.

Projecting model fluxes with the time-varying DSCOVR FOV shows systematic biases in model mean
diurnal cycle that vary by model.

HadGEM2-A vs. Obs Daytime Flux Diurnal Cycle

2251 [ | 1 | | x : ; o
—CERES SYN

—EPIC

220 - —
—NISTAR

—HadGEM2-A -

¥

[\

—

(6)
I

Daytime SW Flux (W/m?)
N N
o o
‘Fm

N

—

o
I




L

.l Obs vs Model RSR Diurnal Cycle =

* Through frequency analysis with power spectral density curves, we can show the time-scales
of variability in modeled RSR, and therefore show the path models use to achieve RSR
interannual variability.

MRI-CGCM3 vs NISTAR/EPIC/CERES SW Power Spectra
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el Examining CMIP6 Models =

* The Coupled Model Intercomparison Project — Phase 6 (CMIP6) is underway, with many models
having already reported results.

» Several experiments report TOA shortwave upwelling fluxes at hourly or sub-hourly intervals.
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Models are calibrated/tuned to
achieve TOA energy balance on long
time-scales.

This process involves balancing a
number of competing model
performance goals by adjusted
parameters to which models are
sensitive but which are poorly or
unconstrained.

There is a question of whether this
juggling act is getting the right
answer for the wrong reason.

TOA radiation imbalance (Wm?)
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A Scientific Discussion on Tuning =

* Only recently has the scientific literature started to discuss how tuning is undertaken at modeling

centers.
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More on the Tuning Process =

* Radiation, as a single number, is targeted for tuning. Shortwave is a key component of this and is
affected, with many other tuning targets by tuning parameters.
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Diurnal Cycle and Diurnal Mean

ALAa

The diurnal cycle of clouds is important for key uncertain cloud feedbacks, including those of the
marine boundary layer.
More analysis on the contributions of specific regions to the global daytime SW flux is needed.
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Part | Summary of Temporal CRE Study =

e For radiation budget observations, DSCOVR’s
distinguishing feature is its temporal frequency.

e SW flux estimates constructed from EPIC and NISTAR
suggest that diurnal filling is not problematic for long-
term estimates of SW fluxes.

* Frequency analysis can help constrain not just long-
term SW fluxes, but how they are achieved by models.
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Part Il: Spectral Shortwave Climate Signals =

* The CERES instrument has been making long-term observations of broadband albedo, but there
are numerous surface and atmospheric features that can simultaneously affect albedo.

* The classic example is a reduction in sea-ice can be counteracted by increasing clouds.

* The spectral dimension of albedo remains relatively unexplored, but has lots of information
about the surface condition, condensates, and gases.
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Observing System Simulation Experiments

"

* There are many fewer hyperspectral shortwave TOA measurements as compared to narrow-band
or broadband measurements. However, CLARREO Pathfinder is coming soon ...

* To understand long-term signals from such instruments, we have built an offline instrument
emulator in ingest CMIP data, which resolves from 300 to 2500 nm at 5 nm resolution.
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el OSSE Capabilities and Outputs =

* The OSSE uses MODTRAN to produce spectrally-resolved radiance and flux values at the TOA.

* By being coupled to CMIP models, it can be used to characterize the spectral signals associated
with model realizations of climate change, and potentially for differentiating models and obs.
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OSSE Applications to CMIP5 =~

* Based on (relatively) consistent outputs from CMIP5, we can produce centennial-length clear-sky
and all-sky spectral albedo calculations.

* We have applied this capability to 3 distinct climate models that roughly span the range of
diagnosed model sensitivities, for the RCP8.5 emissions scenario.

* The cost of these calculations is extreme: thousands of CPU-hours per month of simulation.

Model Name Diagnosed ECS (° K/2xCO2)

CESM1-CAMS5 4.10
CanESM2 3.69
“_CSIRO MI3-6:0 T
MRI-ESM1 2.10
MRI-CGM3 2.60

inmcm4 2.08

!
U




OSSE Applications to CMIP5 =~

 The 3 models we chose exhibit very similar diagnosed clear-sky feedbacks:

* INM-CM4: LW =-1.98 W/m?/K SW =+0.67 W/m?/K
* MIROCS: LW = -1.85 W/m?/K SW = +0.84 W/m?/K
e CSIRO Mk3-6-0: LW =-1.70 W/m?/K SW = +0.84 W/m?/K

e But dissimilar CRE feedbacks.

* INM-CM4 net CRE feedback is small. SW and LW are negative.
* MIROCS net CRE feedbacks are on the high but negative, SW is negative and LW is negative.
*  CSIRO Mk3-6-0 net CRE feedback are mid-range positive, SW is positive and LW is negative.

OLW Clear-Sky Feedback (Wm-2 K-1)

ONet CRE Feedback (Wm-2 K-1)
O SW CRE Feedback (Wm-2 K-1)
OLW CRE Feedback (Wm-2 K-1)

GFDL- GFDL- MRI- MIROCS | NorESM1- CNRM- MPI-ESM-P MPI-ESM- CanESM2 GFDL-CM3 IPSL- HadGEM2- MIROC-
ESM2G ESM2M CGCM3 M CM5 LR CM5A-LR ES ESM
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Spectral Signals in the Broadband

ATa

* Inthe RCP8.5 emissions scenario, model gross temperature responses differ significantly, and the
CRE response differs in sign between the high- (CSIRO) and low-sensitivity (INM) models.

 We see the emergence of anomalies in spectral CRE, primarily at wavelengths below 1300 nm.
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= Geophysical Variable Trends =

To decompose the global signal, let’s first look at how variables that impact the shortwave energy
budget change between the 3 models.

PRW spatial trend patterns similar in shape, differ in magnitude.

Cryospheric changes most severe in medium sensitivity model.

Cloud macroscopic property trends very dissimilar between models.

Low Sensitivity Medium Sensitivity High Sensitivity

INM-CM4 LWP Trends kg/kg/dec
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cc] What is the Info in Shortwave Spectral Obs? =

* The clear-sky signals that emerge from the models are dominated by associated changes in the
cryosphere at high-latitudes.

* Slight trends evident in the water-vapor overtone bands at all latitudes.

e Cryospheric signals are muted in all-sky trends.

* Low-latitude all-sky trends are significant, but are also spectrally-correlated.
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2 \What is the Info in Shortwave Spectral Obs? %=

* Is there extra information in shortwave spectral measurements?

* We perform PCA analysis on the OSSE spectral albedo simulations. If the fraction of variance
explained by the first PC is high, there is little ambiguity in broadband observations, and the
factors that contribute locally to albedo are stationary.

* For 2 of the models, processes contributing to albedo are stationary. However, for the
cryosphere (both high-lat and high-alt), they are not.

Low Sensitivity Medium Sensitivity
INM-CM4 Spectral CRE PC1 Variance Explained H 100
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Part Il Summary of Spectral CRE Study =

* There are competing surface and atmospheric state conditions that

e With a SW hyperspectral OSSE, we can see if there could be
ambiguity in CRE trends observed from CERES.

* We find that, at low latitudes, there is a consistent explanation for all
of the mechanisms that control albedo at a given location at decadal
time-scales.

 Little chance for error cancellation.

* There is ambiguity in albedo-controlling mechanisms in the
cryosphere.



